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Q1 (i) There are several routine features of a graph that one should look to consider on any curve-

sketching question: key points, such as where the curve meets or cuts either of the coordinate axes, 
symmetries (and periodicities for trig. functions), asymptotes, and turning-points are the usual 
suspects. In this case, the given function involves square-roots as well, so the question of the 
domain of the function also comes into question. Considering all such things for 

xxy  31  should help you realise the following:  

 * the RHS is only defined for –3  x  1 (so the endpoints are at (–3, 2) and (1, 2)); 

 * the graph is symmetric in the line  x = –1, with its maximum at  22  ,1 ; NB it must be a  

    maximum since 222   so there is no need to resort to calculus to establish this; 
 * the curve is thus  –shaped, and the gradient at the endpoints is infinite. This last point wasn’t  
    of great concern for the purposes of the question, so its mention was neither rewarded nor its  
    lack penalised: however, this is easily determined by realising that each term in the RHS is of   

    the form 2
1

X , so their derivatives will be of the form 2
1

X  which, when evaluated at an endpoint  

    will give one of them of the form 
0

1
 symptomatic of an asymptote. 

 A quick sketch of y = x + 1 shows that there is only the one solution at x = 1. 
 
 (ii) Each side of this second equation represents an easily sketchable curve. Indeed, the RHS is 

 essentially the same curve as in (i), but defined on the interval [–3, 3]. The LHS is merely a 

 “horizontal” parabola, though only its upper half since the radix   sign denotes the positive 

square-root. These curves again intersect only the once, when x < 0. Resorting to algebra … 
squaring, rearranging suitably and squaring again then yields a quadratic equation in x having one 
positive and one negative root. 

               
 
Q2 The required list of perfect cubes is 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, though there were 
 no marks for noting them.  
 
 (i) In this question, it is clearly important to be able to factorise the sum of two cubes. So, in this 
 first instance  x + y = k,  (x + y)(x2 – xy + y2) = kz3    0)()( 322  zxkxxkx , which 
 gives the required result upon rearrangement. One could either treat this as a quadratic in x and 

 deal with its discriminant or go ahead directly to show that 0)(
3

4 2
23




xy
kz

 which 

 immediately gives that 
3

4 23 kz 
 is a perfect square and also that 2

4
13 kz  ; and the other half of 

 the required inequality comes either from 223 3 kxykz   (since x, y > 0) or from noting that 
 the smaller root of the quadratic in x is positive. Substituting k = 20 into the given inequality then 

 yields 400100 3  z    z = 5, 6, 7 ; and the only value of z in this list for which 
3

4 23 kz 
 is a 

 perfect square is z = 7, which then yields the solution (x, y, z ) = (1, 19, 7). Although not a part of 
 the question, we can now express 20 as a sum of two rational cubes in the following way:  

20 = 
33

7

19

7
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 (ii) Although this second part of the question can be done in other ways, the intention is clearly 
 that a similar methodology to (i)’s can be employed. Starting from 

x + y = z2 ,  (x + y)(x2 – xy + y2) = kz.z2        0
2222  kzxzxxzx  



 we find that 
3

4 4zkz 
 is a perfect square, and also that kzk 43  . With k = 19, 7619 3  z   

   z = 3 or 4. This time, each of these values of z gives 
 

3

76 3zz 
 a perfect square, yielding the 

 two solutions (x, y, z ) = (1, 8, 3) and (6, 10, 4). Thus we have two ways to represent 19 as a sum 

 of two rational cubes: 19 = 
33

3
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 Purely as an aside, interested students may like to explore other possibilities for 333 kzyx  . 
 One that never made it into the question was  

x + y = kz,   222 .)( zkzyxyxyx     0)()( 222  zxkzxxkzx  
  

  0)1(33 222  kzkzxx .  Then  2
6
1

2222

3123
6

)1(1293
kkz

kzzkkz
x 


 ,  

 requiring  12 – 3k2  0  i.e.  k2  4    k = 1 or 2. 
 

 When k = 1:  333 zyx    has NO solutions by Fermat’s Last Theorem; 
 

 and when k = 2:  333 2zyx    has (trivially) infinitely many solutions  x = y = z . 
               
  
Q3 This question is all about increasing functions and what can be deduced from them. It involves 
 inequalities, which are never popular creatures even amongst STEP candidates. Fortunately, you 
 are led fairly gently by the hand into what to do, at least to begin with. 
 
 (i) (a) f (x) = cos x – {x.–sin x + cos x} = x sin x  0  for x  [0, 2

1 ] , and since f(0) = 0 it 

 follows that f(x) = sin x – x cos x  0 for  0  x  2
1 . 

 

 (i) (b) A key observation here is that the “1” is simply a disguise for  x
xd

d
, so you are actually 

 being given that    x
x

x
x d

d
arcsin

d

d
  in the given interval; in other words, that f(x) = arcsin x – x  

 is an increasing function. Since f(0) = 0  and f increasing, f(x) = arcsin x – x  0 for  0  x < 1, and 
 the required result follows. 
 

 (i) (c) Writing g(x) = 
x

x

sin
    g (x) = 

x

xxx
2sin

cossin 
 > 0 for 0 < x < 2

1   using (a)’s result. 

 Now, it may help to write u = arcsin x, just so that it looks simpler to deal with here. Then u  x by 
 (b)’s result   g(u)  g(x)  since g(x)  0 and the required result again follows. 
 
 (ii) There is a bit more work to be done here, but essentially the idea is the same as that in part (i), 
 only the direction of the inequality seems to be reversed, so care must be taken. An added 
 difficulty also arises in that we find that we must show that f   0 by showing that it is increasing 

 from zero. So g(x) = 
x

xtan
, g (x) = 

xx

xx

x

xxx
222

2

cos2

2sin2tansec 



. Examining f(x) = 2x – sin2x 

 (since the denominator is clearly positive in the required interval): f(0) = 0 and f (x) = 2 – 2cos2x 
  0 for 0 < x < 2

1    f  0  g (x)  0    g increasing. Mimicking the conclusion of (i) (c), 

 the reader should now be able to complete the solution.  
               
 



Q4 (i) Using  sin A = cos(90o – A) gives   = 360n  (90o – 4 ) – Note that you certainly should be 
 aware of the periodicities of the basic trig. functions  5  = 360n + 90o  or  3  = 360n + 90o . 
 These give either   = 72n + 18o    = 18o , 90o , 162o or   = 120n + 30o      = 30o , 150o . 
  
 Now using the double-angle formulae for sine (twice) and cosine, we have c = 2.2sc.(1 – 2s2). We 
 can discount c = 0 for  = 18o, so that 1 = 4s(1 – 2s2) which gives the cubic equation in s = sin,   
 8s3 – 4s + 1 = 0  (2s – 1)(4s2 +2s – 1) = 0. Again, we can discount c = 2

1  for  = 18o) which 

 leaves us with sin18o the positive root (as 18o is acute) from the two possible solutions of this 

 quadratic; namely, sin18o = 
4

15 
. 

 
 (ii) Using the double-angle formula for sine, we have 4s2 + 1 = 16s2(1 – s2)  0 = 16s4 – 12s2 + 1 

  s2 = 
8

53

32

8012 



. At first, this may look like a problem, but bear in mind that we want 

 it to be a perfect square. Proceeding with this in mind,  s2 = 

2
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. 

 
 (iii) To make the connection between this part and the previous one requires nothing more than 
 division by 4 to get xx 2sinsin 2

4
12  , and the solution x = 3 = 18o, 5 = 30o    = 6o 

 immediately presents itself from part (ii). However, in order to deduce a second solution (noting 
 that   = 45o is easily seen to satisfy the given equation), it is important to be prepared to be a bit 
 flexible and use your imagination. The other possible angles that are “related” to 18o and might 
 satisfy (ii)’s equation, can be looked-for, provided that sin5 = 2

1  (and there are many 

 possibilities here also). A little searching and/or thought reveals  

 sin x = 






 


4

15
    3  = 180o + 18o = 198o also works, since  5 = 330o  has  sin5 = 2

1 , 

 and the second acute answer is   = 66o. 
               
 
Q5 The simplest way to do this is to realise that OA is the bisector of BOC, so that A is on the 
 diagonal OA of parallelogram OBAC  (in fact, since OB = OC, it is a rhombus)   b + c = a  
 for some  (giving the first part of the result). Also, as BC is perpendicular to OA, (b – c) . a = 0 

   (2b – a) . a = 0     = 
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2 . 

 

 Similarly (replacing  a by b  and  b by c in the above), we have d = kb – c   where  k = 
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 Now A, B and D are collinear if and only if ab )1(  AD  is a multiple of ab AB   

   t(b – a) = ab )1(     for some t ( 0).  



 Comparing coefficients of a and b  then gives (t =)   =  + 1. 
 
 In the case when   = – 2

1 ,   = 2
1  and D is the midpoint of AB. 

 

 Finally,   = 2
1   

 
   1
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, and using the scalar product formula 

 
ab

ba   
cos


  gives 

8

3
cos  . [Note that  a . b has the same sign as  .] 

               
 

Q6 To begin with, it is essential to realise that the integrand of      nxfxfI )()( 2 dx  must have its 

 two components split up suitably so that integration by parts can be employed. Thus 

 I =        nxfxfxf )()()( dx  =       
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 Now (and not earlier) is the opportune moment to use the given relationship )()()( xfxkfxf  , 

 so that I =     
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 as     3  1  )(
)3)(1(

1
)(

1

1
)(  





 nn xfk

nn
xf

n
xf  (+ C). 

 
 (i) For f(x) = tan x,  f (x) = sec2x  and  f (x) = 2 sec2x tan x = )()( xfxkf   with  k = 2. 

 Also, differentiating  I = 
)3)(1(

tan2

1

tansec 3  1  2








nn

x

n

xx nn

 gives        

 xxxxxxnx
nx

I nn 1  22 tan.tansec.sec2sec.tan)1.(sec
1

1

d

d 


    

 –  xxn
nn

n 22  sec.tan)3(2
)3)(1(

1 


 = sec4x tannx =    nxfxf )()( 2   as required, 

 although this could be verified in reverse using integration. Using this result directly in the first 
 given integral is now relatively straightforward: 

 x

x
8

4

cos

sin
dx =  xx 44 tansec dx = C

xxx


35

tan2

5

tansec 752

. 

 
 (ii) Hopefully, all this differentiating of sec and tan functions may have helped you identify the 
 right sort of area to be searching for ideas with the second of the given integrals.  
 If  f(x) = sec x + tan x,  f (x) = sec x tan x + sec2x = sec x(sec x + tan x) 
 

                 and  f (x) = sec2x(sec x + tan x) + sec x tan x(sec x + tan x) 
 

                       = sec x (sec x + tan x)2 = )()( xfxkf   with  k = 1. 

 Then   62 tansecsec  xxx dx =     42 tansectansecsec xxxxx  dx 

                   = C
xxxxx


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
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Q7 (i) Once you have split each series into sums of powers of  and  separately, it becomes clear 

 that you are merely dealing with GPs. Thus 


n

r
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 (ii) There is no need to be frightened by the appearance of the nested sums here as the ‘inner sum’ 
 has already been computed: all that is left is to work with the remaining ‘outer sum’ and deal 

 carefully with the limits:  


 




















1  2

0  

2

0  

2

0  0  2

1

2

1
1  

n

m

n

m

n

m r
mm

m

r bba   (since  b0 = 0) 

 = 







 2

2

1

2

1
2  2na  =  2

2

1 2  22  2   nn   =       21  1  21  2
2

1   nnn    since   = –1  

 and n + 1 is even when n is odd =  2
1  2

1
nb   when n is odd. However, when n is even, n + 1 is odd 

 and  
 








n

m r

m

ra
2

0  0  

 =   2
2

1 2
1  nb   or   2

1  2

1
na . 

 

 (iii) We already have the result 
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Q8 The string leaves the circle at C(–cos , sin ).  
 Since the radius of the circle is 1, Arc AC =  – t =   (so  cos  = – cos t   and   sin  = sin t). 
 Then  B = (–cos  + t sin , sin  + t cos ) = (cos t  + t sin t , sin t –  t cos t). 
 

 tttttt
t

x
cos sincossin

d

d
   by the Product Rule; = 0  when  t = 0,  (x, y) = (1, 0)  or           

 t = 2
1 , (x, y) =  1  ,2

1  . This is xmax so  t0 = 2
1 . 

 
 The required area under the curve and above the x-axis is 
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 using the double-angle formulae for sine and cosine. As the integration here may get very messy, 
 it is almost certainly best to evaluate this area as the sum of three separate integrals: 
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 using a previous answer. 

 Thus A = 
4

3
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7 3 
 . 

 
 For the total area swept out by the string during this process (called Involution), we still need to 

 add in the area swept out between t = 0 and t = 2
1 , which is 

448

3 
  (there is, of course, no 

 need to repeat the integration process), and then subtract the area inside the semi-circle. Thus the 

 total area swept out by the string is
4

3

48

7 3 
 + 










448

3 
2


   (area inside semi-circle) = 

6

3
. 

               
 
Q9 Collisions questions are always popular, as there are only two or three principles which are to be 
 applied. It is, nonetheless, good practice to say what you are attempting to do. Also, a diagram, 
 though not an essential requirement, is almost always a good idea, if only since it enables you to 
 specify a direction which you are going to take to be the positive one, especially since velocity 
 and momentum are vector quantities. Once these preliminaries have been set up, the rest is fairly 
 easy. By CLM, 3mu = 2mVA + mVB  and NEL/NLR gives e.3u = VB – VA . Solving these 
 simultaneously for VA and VB yields VA = u(1 – e) and VB = u(1 + 2e). 
 
 Next, after its collision with the wall, B has speed  | f VB | away from the wall. 
 
   
 

 For the second collision of A and B, by CLM (away from wall),  fmVB – 2mVA = 2mWA – mWB,   
 

 and NEL/NLR gives WA + WB = e(VA + f VB). Substg. for VA & VB from before in both of these 
 equations  2WA – WB =  )1(2)21( eefu   and WA + WB =  )21()1( efeeu  . Solving 

 these simultaneously for WA (not wanted) and WB then gives WB =     22
3
1 4112 efeu  , as 

 required.    
 
 Noting that 241 e  can be negative, zero, or positive, it may be best (though not essential) to 
 consider the possible cases separately: 
 if  e = 2

1 ,  WB =      002 2
1

4
3

3
1  ufu ; 

 

 if  2
1  < e < 1,  WB =     1412 22

3
1  efeu  > 0  for all e, f  since each term in the bracket is > 0; 

 

 if  0 < e < 2
1 ,  1 – e2 > 4

3   and   WB >      01141 2
3

3
12

2
3

3
1  uefu . 

               
 
 
 
 
 



Q10 The maximum height of a projectile is when 0sin  gtuy    
g

u
t

sin
 . Substituting this 

 into  2
2
1sin gtuty     H = 

g

u

2

sin 22 
  (although some people learn it to quote). 

 

 When the string goes taut, its length l is given by  l = 
g

u
H

4

sin 22

2
1 

 . But l is also given from the 

 y-component of P’s displacement as l = 2
2
1sin gtut  , which gives the quadratic equation 

 0)sin2(2  Htugt   in t. Solving by the quadratic formula, t = 
g

gHuu

2

4sin4sin2 22  
  

 

   = 
g

gHgHgH

2

4822 
=  gHgH

g
2

1
 =  12 

g

H
 , where we take the smaller of the 

 two roots since we want the first time when an unimpeded P is at this height. 
 

 At this time, P’s vertical velocity is v =  12sin 
g

H
guy   =  122  gHgH  

 gH or  
2

sinu
. Thus, the common speed of P/R after the string goes taut, by CLM, is  gH2

1   

 or  
22

sinu
. 

 
 When the string goes slack, we must consider the projectile motion of R, which has initial velocity 

 components u cos  and 
22

sinu
  . [Note that both P and R move in this way, so P no longer 

 interferes with R’s motion.] R’s vertical displacement is zero when 2

222

sin
t

g
t

u
yR 


= 0 (t  0) 

  
2

sin

g

u
t


  (and this is the extra time after the string has gone slack). The total distance 

 travelled by R is thus D = x1 + x2, where  x1 =  12
2

sin
cos 

g

u
u

  and x2 = 
2

sin
cos

g

u
u

          

 = 
g

u  cossin2

. 

 
 Finally, setting D = H    tan  = 2. 
               
 
 
 
 
 
 
 
 
 
 
 



   

Q11 (i) The saying goes that “a picture paints a thousand words” and tis is especially true in mechanics 
 questions, if for no better reason than it gives the solver a clear indication of angles/directions for 
 – in this case – the forces involved. The relevant diagrams are as follows: 
 
     O        A    O            B      O       C    A 
 
 k             k    k                  Tsin30o 
  T               U             V         j 

 
         30o                             60o      

          O        iO 
     P       P         P                      
 

                     Vsin60o   
            U cos   
              
               B     C 
 

 It might also be wise to note the sines and cosines of the given angles:  tan = 2   
3

2
sin   

 and 
3

1
cos  , and tan = 

4

2
  

3

1
sin   and 

3

22
cos  . Having noted these carefully, it 

 is now reasonably straightforward to state that the vector in the direction of PB is   

    kji  sin sin.cos cos.cos  UUU   = kji  
3

2
 

3

2
 

3

1
 . 

 Note that the question requires you to verify that this vector has magnitude 1. 
 
 (ii) The forces involved are now readily written down … 

  TB   = U







 kji  

3

2
 

3

2
 

3

1
 follows from (i)’s answer. Also, 

  TA   = kj  30cos 30sin  TT  =  kj  3
2

1
T , 

  TC   = kji  60cos sin60sin cos60sin  VVV   = 







 kji  

3

1

3

22

2

1
V  

       and   W = – W k . 
 
 (iii) Having set the system up in vector form, the fundamental Statics principle involved is that 

TA + TB + TC + W = 0  . 
 Comparing components in this vector equation gives 

  ( i ) 0
3

6

3

1
0  VU   6VU    

   ( j )    0
6

3

3

2

2

1
 VUT   (using 6VU  )  VT

3

35
  

  ( k )   WVUT 
2

1

3

6

2

3
 (using 6VU   and VT

3

35
 )   

3

3W
T  ,  

5

6W
U  ,  

5

W
V  . 

               
 



Q12 It is important in these sorts of contrived games to read the rules properly: in this case, you must 
 ensure that you are clear what is meant by ‘match’, ‘game’ and ‘point’. Then, a careful listing of 
 cases is all that is required. 
  
 (i) P(re-match) = P(XYX) + P(YXY) = p(1 – p)2 + (1 – p)3 = (1 – p)2. 
 

 P(Y wins directly) = P(YY) + P(XYY) = (1 – p)p + p(1 – p)p = p(1 – p)(1 + p)  or   21 pp  . 

 Thus,  P(Y wins) = w =   22 )1(1 pwpp  , and you will note the way starting the match again 
 leads to a recurrent way of describing Y’s chances of winning. Re-arranging this then gives 

 
 

2

2

)1(1

1

p

pp
w




  = 
 

  )1(1)1(1

1 2

pp

pp




 = 
 

)2(

1 2

pp

pp




 = 
p

p




2

1 2

  for  p  0.   

 

 Next, 
 

)2(2

)21(

)2(2

)2(12 2

2
1

p

pp

p

pp
w








 , and since  2 – p > 0,  2

1w   has the same sign as   

 1 – 2p  and hence as p2
1 . Hence,  w > 2

1   if  p < 2
1    and   w < 2

1   if  p > 2
1 . 

 
 To be fair at this point, the final demand of part (i) ended up being rather less demanding than was 
 originally intended, as the answer is either “Yes” or “No” … though you would of course, be 
 expected to support your decision; no marks are given for being a lucky guesser! The following 
 calculus approach is thus slightly unnecessary, as one can simply provide an example to show that 
 w can decrease with p. The following, more detailed analysis had been intended. 

 
 

2

2

)2(

)1(1)2)(2(

d

d

p

ppp

p

w




  =    3]2[
)2(

1
14

)2(

1 2
2

2
2







p
p

pp
p

. 

 Then 
p

w

d

d
 > 0  for  0 < p < 32    and  

p

w

d

d
 < 0 for  32   < p  1. 

 
 For a fair game, Y’s expectation should be 0. Thus, using E(gain) =   )(P ii gg , where gi is the 

 “gain function” for Y, with w = 12
5  when p = 3

2 , we have  0 = 12
7

12
5 )1()( k   k = 1.4 . 

 
 When  p = 0,  the results run   YXY ... re-match ... YXY ... re-match ...  and the match never ends.  
               
 
Q13 Firstly, skewness is a measure of a distribution’s lack of symmetry. 
 
 (i) For the next part, you should understand how the “expectation” function behaves. 

   3XE  =  3223 33   XXXE  =       3223 33   XEXEXE   

 

                    =     32223 .33  XE  using E[X] =   and E[X2] = 2 + 2 
 

                    =   323 3  XE , as required. 
 
 For a given distribution, this next bit of work is very routine indeed. 

   
1

0

22xXE dx = 
0

1
3

3

2






x  = 3
2 ;   

1

0

32 2xXE dx = 
0

1
4

2

1






x  = 2
1     18

12  ; and 

   
1

0

43 2xXE dx = 
0

1
5

5

2






x  = 5
2 ; all of which then lead to 

1818
1

27
8

18
1

3
2

5
2 ..3 

  = 
5

22
  when 

 substituted into the given (previously deduced) formula. 
 



 (ii) Here, F(x) = 
x

x
0

2 dx = 2x  (0  x  1)  F – 1(x) = x    (0  x  1) 

   
     

   
10
1

10
3

10
1

2
2

10
3

10
11

10
91

10
11

2
11

10
91 2









 



FF

FFF
D  = 52

2

524

13

1523








. 

 

 M is given by  
M

x
0

2 dx = 2
1    M 2 = 2

1     M = 
2

1   (OR by  M = F – 1( 2
1 ) = 

2
1 ). 

 And  P = 
 

926
3

23
1

2
1

3
2




. 

 In order to establish the given inequality “chain”, we must show that D > P and P >  (there is no 

 point in proving that D > ). One could reason this through by considering approximants to 2  

 and 5 , but care must be taken not to introduce fallacious “roundings” which don’t support the 
 direction of the inequality under consideration. The alternative is to establish a set of equivalent 
 numerical statements; for example, to show that D > P …   

 92652    26511    

          725225121   (after squaring, since both sides are positive) 

          52254   or 51127    605729   (again, squaring positive terms) 
 and this final result clearly IS true, so the desired inequality is established. 
               
 
 
 
 
 
 
 
 
 
 


